Spironolactone Inhibits NADPH Oxidase-Induced Oxidative Stress and Enhances eNOS in Human Endothelial Cells
نویسندگان
چکیده
Accumulating evidence indicates that aldosterone plays a critical role in the mediation of oxidative stress and vascular damage. NADPH oxidase has been recognized as a major source of oxidative stress in vasculature. However, the relation between NADPH oxidase in aldosterone-mediated oxidative stress in endothelial cells remains to be ascertained. The present study aimed to investigate the relevant role of NADPH oxidase in aldosterone induced oxidative stress and the functional consequence of this effect on endothelial function. Additionally, we attempted to examine the potential role of the mineralocorticoid receptor (MR) antagonist; spironolactone (spiro) in this scenario. Human umbilical artery endothelial cells (HUAECs) were incubated with aldosterone (100 nmol/L, 24 h) in the absence and presence of Spiro (1 µmol/L). The results showed that aldosterone significantly increased the protein expression of NADPH oxidase subunits (Nox2, p47(phox) and p22(phox)) and that spiro markedly inhibited these changes. Functionally, this was associated with an elevation in NADPH oxidase activity and 3-nitrotyrosine (3-NT) as a biochemical marker of oxidative stress. However, pre-incubation with spiro inhibited these consequences. Moreover, MR protein expression was upregulated by aldosterone whereas this effect was suppressed by Spiro. While aldosterone effectively inhibited endothelial nitric oxide (eNOS) protein expression, pretreatment with spiro markedly restored it to its normal level. In conclusion, the results achieved suggest that aldosterone may play a critical role in NADPH oxidase-mediated oxidative stress resulting in reduced eNOS expression in human endothelial cells. Spiro effectively reversed these consequences, suggesting its potential vasculoprotective effect in endothelial dysfunction.
منابع مشابه
Spironolactone Inhibits NADPH Oxidase-Mediated Oxidative Stress and Dysregulation of the Endothelial NO Synthase in Human Endothelial Cells
Accumulating evidence indicates that aldosterone plays a critical role in the mediation of oxidative stress and vascular damage. NADPH oxidase has been recognized as a major source of oxidative stress in vasculature. However, the relation between NADPH oxidase in aldosterone-mediated oxidative stress in endothelial cells remains to be ascertained. The present study aimed to investigate the rel...
متن کاملSpironolactone Inhibits NADPH Oxidase-Mediated Oxidative Stress and Dysregulation of the Endothelial NO Synthase in Human Endothelial Cells
Accumulating evidence indicates that aldosterone plays a critical role in the mediation of oxidative stress and vascular damage. NADPH oxidase has been recognized as a major source of oxidative stress in vasculature. However, the relation between NADPH oxidase in aldosterone-mediated oxidative stress in endothelial cells remains to be ascertained. The present study aimed to investigate the rel...
متن کاملAldosterone Induces Oxidative Stress Via NADPH Oxidase and Downregulates the Endothelial NO Synthesase in Human Endothelial Cells
Aldosterone is traditionally viewed as a hormone regulating electrolyte and blood pressure homeostasis. Recent studies suggest that Aldo can cause microvascular damage, oxidative stress and endothelial dysfunction. However, its exact cellular mechanisms remain obscure. This study was undertaken to examine the effect of Aldo on superoxide production in human umbilical artery endothelial cel...
متن کاملP77: NADPH Oxidase Type 4 Inhibits Immune Cell Trafficking into The Central Nervous System During Neuroinflammation
Transendothelial trafficking of immune cells into the central nervous system (CNS) and disruption of the blood brain barrier (BBB) are pathophysiological hallmarks of neuroinflammatory disorders like multiple sclerosis (MS). Accumulating evidence suggest that oxidative stress plays a major role in the pathogenesis of MS, whereas a specific influence of oxidative stress on BBB dysfunction in MS ...
متن کاملSoluble CD40 ligand induces endothelial dysfunction in human and porcine coronary artery endothelial cells.
The purpose of this study was to determine the effects and mechanisms of sCD40L on endothelial dysfunction in both human coronary artery endothelial cells (HCAECs) and porcine coronary artery rings. HCAECs treated with sCD40L showed significant reductions of endothelial nitric oxide synthase (eNOS) mRNA and protein levels, eNOS mRNA stability, eNOS enzyme activity, and cellular NO levels, where...
متن کامل